Influence of a Laser-Lok Surface on Immediate Functional Loading of Implants in Single-Tooth Replacement: Three-Year Results of a Prospective Randomized Clinical Study on Soft Tissue Response and Esthetics

Renzon Guarnieri, MD, DDS
Maurizio Grande, DDS
Stefano Illipiti, DDS
Vincenzo Iorio-Siciliano, DDS, PhD
Francesco Ricciello, MD/Davide Farronato, DDS, PhD

The purpose of the present prospective randomized study was to evaluate the influence of Laser-Lok microtextured surface on soft tissue peri-implant parameters and esthetics around immediate, functionally loaded fixtures for single-tooth replacement in the esthetic zone. This study included 77 patients divided into two groups based on different implants used: the control group had BioHorizons tapered internal non-Laser-Lok-type implants (NLL; n = 39) and the test group had BioHorizons tapered internal Laser-Lok-type implants (LL; n = 39). Outcome measures were survival, radiographic marginal bone-level changes, soft tissue parameters, and esthetics. One implant was lost in the test group and one in the control group, for a total survival rate of 96.1% after 3 years. Radiographically, mean crestal bone loss ± standard deviation was 0.59 ± 0.27 mm in the LL group compared with 1.17 ± 0.31 mm in the NLL group. A mean gain in papilla level of 0.41 ± 0.34 mm and 0.17 ± 0.36 mm was observed in the LL and the NLL group, respectively, while the level of the midfacial peri-implant mucosa remained stable in both groups with no statistically significant differences (0.08 ± 0.42 mm for the LL group vs 0.06 ± 0.36 mm for the NLL group). The mean probing depth values in the LL and NLL groups were 0.58 ± 0.2 mm and 1.89 ± 0.3 mm, respectively. Within the limitations of this study, it was demonstrated that the clinical and esthetic outcome of immediate functional loading was more favorable for LL implants than for NLL implants.

Single implant treatment in the esthetic zone is considered highly predictable and successful, at least in terms of implant survival and hard tissue remodeling after conventional implant surgery. In recent years, high clinical success rates with the original treatment protocol have given clinicians confidence to further develop and refine the osseointegration technique. Shorter treatment periods, to allow immediate or early loading of implants, have been advocated even for single implant treatments in the esthetic zone. Immediate and early loading are defined as the application of a load by means of an occluding or nonoccluding restoration within 48 hours of implant placement. However, because the applied load is often reduced or even absent in single tooth replacement, it has also been proposed to use the term immediate/early function rather than immediate/early loading. Even though a number of reports are available on immediate single implant treatment in the esthetic zone, few prospective studies have been published with data on soft tissue dynamics and esthetics. Therefore, the aim of this study was to compare the clinical and esthetic outcome of immediate nonocclusal loading, using two different implants to replace missing anterior teeth. Both types of
implants have the same design and the same surfaces treated with resorbable blast media, with the exception that the Laser-Lok implant has a dual bioaffinity collar consisting of two types of laser microtexturing grooves (8 µm and 12 µm). The first published clinical data on this kind of surface reported a consistent difference in marginal bone loss, probing depth (PD), and mucosal recession between the implant pairs with and without the laser-microtextured implant collar treatment.10–15 Thus, the research hypothesis of this study was that the laser-microtexturing collar surface on the implant neck may influence esthetic outcomes and soft tissue responses using an immediate loading protocol. Two-year data on marginal bone loss and clinical parameters, including clinical attachment level, plaque index (PI), and bleeding on probing (BoP) have been previously reported.15

Method and materials

This randomized, prospective, clinical trial was approved by the institutional review board of the University of Naples (Italy) (protocol #7413). All patients considered for inclusion in the study were examined between January 2008 and December 2012 in dental clinics located in Italy; all clinics had extensive experience in implant treatment of patients. Treatments were performed in accordance with the Helsinki Declaration. All patients were informed that two different implants were used and gave their informed consent to the treatment. The study group included 78 implants that were placed in 77 patients (36 men and 41 women; mean age: 49.3 years; range: 45–65 years) referred for implant therapy, who required single-tooth rehabilitation in the middle to anterior area of the maxilla and the middle to anterior area of the mandible. Patients were recruited and treated by three different clinicians/centers, using similar and standardized procedures. One clinician/center was supposed to treat 27 patients, and two clinicians/centers 25 patients each. The implant sites were randomly allocated to one of the treatment groups. In the control group, BioHorizons tapered internal non–Laser-Lok-type (NLL; n = 39) implants were used, and in the test group BioHorizons tapered internal Laser-Lok-type (LL; n = 39) implants were used. A randomization protocol was produced from a computer-generated list for the assignment of subjects to the two treatment groups. Minimization was used for the age variables (≤ 30 years, 31–60 years, and > 60 years). The preoperative assessments included clinical and radiographic examinations using intraoral radiographs and sometimes panoramic radiographs and/or computed tomography scans. Patients were selected for this study according to the following criteria: (1) no contraindications for treatment, such as systemic diseases (eg, diabetes), pregnancy, regular use of prescription medications, or consumption of recreational drugs; (2) single tooth loss with neighboring teeth in normal occlusion; recipient sites for implants that had healed for > 3 months after tooth extraction; (3) teeth adjacent to the implant area (mesially and distally) had to be present and free of overhanging or insufficient restoration margins and/or caries (restorations and carious lesions were repaired during the initial professional oral hygienic therapy); (4) adequate bone of at least 9 mm length and 3.8 mm width; and (5) minimal peak insertion torque of 35 Ncm. Bruxism, the presence of a “deep bite” in the superior central incisors, and periodontal disease were considered only as risk factors. Patients with periodontitis were treated before implant surgery. The exclusion criteria were (1) non-compensated diseases; (2) poor oral hygiene; and (3) smoking > 10 cigarettes a day. Patients received detailed information on the two kinds of implant (described later herein) and a full description of the surgical procedures and possible risks of immediate loading.

For every patient, diagnostic casts were made and mounted on a semiajustable articulator using a face-bow and a bite registration. Occlusal analysis was performed, diagnostic wax-ups were prepared on the articulated casts, and restorative treatment needs were determined. Demographic data, medical and dental health history, and smoking status were obtained by questionnaire. Periodontal status was determined by a comprehensive periodontal examination. All patients demonstrated good oral hygiene and compliance (mean ± standard deviation PD, 1.8 ± 0.7 mm; BoP, 4%; PI, 6%).
Implants

The two different implants used—LL and NLL—had the same design and the same surfaces treated with resorbable blast media (roughness between 0.72 and 1.34 mm), with the exception that LL had a dual bioaffinity collar with an implant neck consisting of two types of microgrooves. The LL implant neck is composed of a 0.3-mm turned surface, 0.7-mm microgrooves with an 8-µm pitch, and 0.8-mm microgrooves with a 12-µm pitch.

Surgery

All implants were placed in healed sites at least 3 months after tooth removal, allowing the extraction site to heal. Implant sites were primarily free from clinical signs of inflammation. Implants were placed using a one-stage surgical approach. Surgical access was carried out with a full-thickness flap at the level of keratinized mucosa with a minimally extended release incision to expose the crest and the vestibular limit of the bone. The site was prepared, and the implant was placed in its final position with a torque driver (Precise Adjustable Torque Wrench, BioHorizons). Inclusion criterion was a final torque of at least 35 Ncm. No patient was dropped from the study because of lack of final torque. The receiving sites were prepared with cylindrical burs of increasing diameter, according to the recommendations of the manufacturer. Bone quality and quantity were assessed according to the Lekholm and Zarb criteria. In the presence of soft bone (type 3 to 4), an underpreparation technique was performed using a specific thinner bur.

Implant loading

After complete positioning of the implants, sterile impression transfers were connected and the flaps were sutured where needed. Impressions were taken with an open tray using Impregum NF (ESPE), and the jaw relationship was recorded. Temporary acrylic crowns were fabricated the same day and cemented with temporary cement (Temp Bond, Kerr). Fixed final prostheses of porcelain casted on golden alloy or zirconia were made after 4 to 6 months (66 after 4 months, 5 after 5 months, and 7 after 6 months).

Medication and postoperative care

Patients scheduled for surgery were prescribed an analgesic (ibuprofen, 600 mg, immediately after the surgical intervention and after 8 hours), a systemic antibiotic (amoxicillin/clavulanic acid, 1 g, twice a day for 7 days), and a chlorhexidine digluconate solution 0.12% rinse (twice daily for 1 minute). Sutures were left in place for 10 days. During the healing period, patients received oral hygiene instructions and debridement, if necessary, at monthly appointments with the dental hygienist. At the time of definitive crown placement, patients were enrolled in a maintenance program consisting of semiannual follow-up appointments.

Outcome measures

The primary outcome measures of this study were implant survival, radiographic marginal bone level changes, amount of plaque using the modified PI, BoP using the modified sulcus bleeding index, volume of the interproximal papilla using the papilla index, width of attached mucosa using the “attached mucosa index,” pocket PD measured to the nearest 1 mm using a manual periodontal probe (CP 12, Hu-Friedy), and esthetics using the pink esthetic score (PES). Both the implant and the adjacent teeth were analyzed.

Radiographic examination

For every patient, periapical radiographs (Ultra-speedA, Eastman Kodak) by means of a 65-kV dental radiographic unit equipped with a long cone (Oralix 65 S, Gendex Dental Systems) were exposed at implant surgery and temporary crown placement, and after 1 (T1), 2 (T2), and 3 (T3) years. For the radiographic procedures, a silicone index material was fixed to the upper dentition and a radiograph holder was constructed for each patient. The radiographs were then digitized using a dedicated scanner (HP 3000) with a resolution of 2,048 × 3,072 lines and converted into .jpg files. A software package (AutoCAD 2000) was used to calibrate the image at

Volume 35, Number 5, 2015
a 1:1 ratio, referring to the implant length and diameter, and to take measurements. The distance from the connection of the implants to the first bone to implant contact was measured parallel to the major axis of the fixture. The delta between the measured length at T3 and the baseline length defines the marginal bone loss as an average between the two sides of the implant.

Success rating

Criteria for success were applied according to Albrektsson and colleagues. Failure was defined as implant removal for any reason.

Esthetic assessments

The esthetic outcomes of the peri-implant mucosa were objectively rated by a blinded clinician who had not been involved in the treatment using digital photographs (FinePix S3 Pro camera, Fujifilm) to determine the PES. Digital photographs were taken at baseline and T3. For calibration of the photographs, a calibrated probe was held in close contact and parallel to the long axis of a tooth adjacent to the implant. Full-screen analysis of the photographs was performed using Adobe Photoshop (Adobe Photoshop CS3 Extended, Adobe Systems). To assess the reliability of the photographic examination, 20 photographs (10 from each study group) were randomly selected and measured by the examiner twice with a 2-week interval. The intraobserver agreement of the photographic examination was tested earlier and reported as good, with a mean difference of 0.11 ± 0.02 mm between both times of measurements.

Data analysis

For between-group comparisons of numeric and normally distributed variables (assessed using the Kolmogorov-Smirnov test), t tests were used. Variables that were not normally distributed were statistically explored using the Mann-Whitney test. The Friedman test was applied for several within-group comparisons and Wilcoxon signed-rank test to compare two dependent conditions. Categorical variables were statistically explored with the chi-square test or the Fisher exact test. In all analyses, a significance level of .05 was chosen. Data were analyzed using SPSS software version 16.0 (SPSS).

Results

The present study describes the longitudinal observation of 78 implants divided into two groups: 39 LL implants in the test group and 39 NLL in the control group. Among the patients, 42 implants were placed in the maxilla (22 LL and 20 NLL), and 36 implants were placed in the mandible (17 LL and 19 NLL). Two implants (3.9% of all implants placed) were lost and not included in the final study group. The implant failures presented with a sudden onset of pain, suppuration, and mobility. The two implant groups showed no difference in implant failures (LL: 3.9% vs NLL: 3.9%; P > .05, chi-square test). The variables of sex, age, smoking, jaw, and position showed no significant influence on implant removal (P > .05; chi-square test).

Clinical and esthetic outcome

The implants lost in the NLL group (5 weeks after placement) and in the LL group (3 weeks after placement) were not included in the final radiographic and clinical data analyses. In Figs 1 and 2 are reported the frequency distribution of papilla and bleeding index at the 3-year follow-up. Table 1 summarizes the radiographic and clinical outcomes.

At the 3-year follow-up (T3), the level of the midfacial peri-implant mucosa remained stable in both study groups without statistical differences (0.08 ± 0.42 mm for the LL group vs 0.06 ± 0.36 mm for the NLL group) (P > .05), and a mean gain in papilla level of 0.41 ± 0.34 mm and 0.17 ± 0.36 mm was observed in the LL and the NLL group, respectively (Table 1). The mean papilla level in the NLL group was significantly lower compared with the mean level in the LL group (P < .05). The clinical assessments also yielded significant differences between both the groups for pocket PD and papillae index but no significant differences were found between the study groups regarding PI, bleeding index, and width of attached mucosa. At T3, a PI score of 1 was assigned to six implants in the LL study groups and to seven
implants in the NLL group. The remaining implants did not show any plaque. Within-group analysis revealed lower plaque scores for the adjacent teeth at T3 compared with preoperative values \((P < .05) \). The height of the keratinized epithelium around implants in both groups was > 2 mm, with no statistically significant differences. Mean PESs were 11.72 ± 0.48 for the LL group and 11.2 ± 0.57 for the NLL group. Figs 3 and 4 show two examples of soft tissue dynamics recorded for LL and NLL implants. Tables 2 and 3 report the pink esthetic score values.

Marginal bone level change

The mean marginal bone loss (mesial and distal implant sides combined) from implant placement (baseline) to T3 was 1.24 ± 0.28 mm in the NLL group and 0.65 ± 0.22 mm in the LL group. Results showed a statistically significant correlation between two groups \((P < .05) \) (Table 1). Figs 5 and 6 show two examples of marginal bone remodeling recorded for LL and NLL implants.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>LL(^1)</th>
<th>NLL(^2)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal bone-level changes (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesial side of implant</td>
<td>(-0.61 ± 0.34)</td>
<td>(-1.24 ± 0.35)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Distal side of implant</td>
<td>(-0.70 ± 0.11)</td>
<td>(-1.38 ± 0.26)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Mesial side of tooth</td>
<td>(-0.22 ± 0.31)</td>
<td>(-0.26 ± 0.22)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Distal side of tooth</td>
<td>(-0.24 ± 0.15)</td>
<td>(-0.18 ± 0.14)</td>
<td>(> .05)</td>
</tr>
<tr>
<td>Marginal soft tissue-level changes (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal side of implant papilla</td>
<td>(0.48 ± 0.17)</td>
<td>(0.13 ± 0.24)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Mesial side of implant papilla</td>
<td>(0.35 ± 0.52)</td>
<td>(0.22 ± 0.49)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Midfacial side of implant</td>
<td>(0.08 ± 0.42)</td>
<td>(0.06 ± 0.36)</td>
<td>(> .05)</td>
</tr>
<tr>
<td>Mesial side of tooth</td>
<td>(-0.24 ± 0.021)</td>
<td>(-0.31 ± 0.23)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Distal side of tooth</td>
<td>(-0.28 ± 0.39)</td>
<td>(-0.27 ± 0.40)</td>
<td>(> .05)</td>
</tr>
<tr>
<td>Probing pocket depth (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesial side of implant</td>
<td>(0.56 ± 0.33)</td>
<td>(1.80 ± 0.30)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Distal side of implant</td>
<td>(0.61 ± 0.29)</td>
<td>(1.98 ± 0.41)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Midfacial side of implant</td>
<td>(0.48 ± 0.32)</td>
<td>(1.73 ± 0.54)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Proximal side of teeth(^1)</td>
<td>(0.84 ± 0.37)</td>
<td>(1.81 ± 0.18)</td>
<td>(< .05)</td>
</tr>
<tr>
<td>Midfacial side of teeth(^1)</td>
<td>(0.91 ± 0.44)</td>
<td>(1.93 ± 0.33)</td>
<td>(< .05)</td>
</tr>
</tbody>
</table>

\(^1\)At implant placement for bone levels, at temporary crown placement for gingival levels, and at definitive crown placement for pocket depths.

\(^2\)Data are means ± standard deviations.

\(^1\)Mesial and distal sides combined.
Fig 3 Example of soft tissue dynamics recorded around an LL implant during the study period. (a) Baseline (at temporary crown placement); (b) 1-year follow-up; (c) 2-year follow-up; (d) 3-year follow-up.

Fig 4 Example of soft tissue dynamics recorded around an NLL implant during the study period. (a) Baseline (at temporary crown placement); (b) 1-year follow-up; (c) 2-year follow-up; (d) 3-year follow-up.

Fig 5 Example of marginal bone remodeling recorded around LL during the study period. (a) Baseline (at implant placement); (b) 3-years follow-up.

Fig 6 Example of marginal bone remodeling recorded around NLL during the study period. (a) Baseline (at implant placement); (b) 3-year follow-up.
Discussion

Studies on immediate loading often rely on implant survival rates. However, in the anterior zone, the success of implant therapy is also determined by the long-term quality of survival, which is dictated by a mixture of several factors, including esthetics. One factor affecting the long-term quality of survival is the level of peri-implant marginal bone loss. This is because peri-implant bone loss may induce pocket formation and could be unfavorable.

Table 2 Summarized pink esthetic scores of the implants included in relation to baseline* recorded at 3-year follow-up

<table>
<thead>
<tr>
<th>Groups</th>
<th>Value 0</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 0</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesial papilla</td>
<td>1</td>
<td>7</td>
<td>31</td>
<td>3</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Distal papilla</td>
<td>1</td>
<td>9</td>
<td>29</td>
<td>4</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>Midfacial mucosa level</td>
<td>2</td>
<td>9</td>
<td>28</td>
<td>2</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>Midfacial contour</td>
<td>1</td>
<td>12</td>
<td>26</td>
<td>1</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>Alveolar process deficiency</td>
<td>3</td>
<td>6</td>
<td>30</td>
<td>3</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Soft tissue color 1</td>
<td>1</td>
<td>6</td>
<td>32</td>
<td>2</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>Soft tissue texture 1</td>
<td>2</td>
<td>6</td>
<td>31</td>
<td>2</td>
<td>7</td>
<td>30</td>
</tr>
</tbody>
</table>

*at the temporary crowns placement.
LL = Laser-Lok; NLL = no Laser-Lok.

Table 3 Pink esthetic score

<table>
<thead>
<tr>
<th></th>
<th>LL</th>
<th>NLL</th>
<th>LL</th>
<th>NLL</th>
<th>LL</th>
<th>NLL</th>
<th>LL</th>
<th>NLL</th>
<th>LL</th>
<th>NLL</th>
<th>LL</th>
<th>NLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesial papilla</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Distal papilla</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Midfacial mucosa level</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Midfacial contour</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Alveolar process deficiency</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Soft tissue color 2</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Soft tissue texture 2</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Total score (maximum 14)</td>
<td></td>
</tr>
</tbody>
</table>

LL = Laser-Lok; NLL = no Laser-Lok; SD = standard deviation.
for the long-term health of the peri-
implant tissues.19 In the present
study, radiographic measurements
at the mesial and distal sites re-
vealed statistically significant differ-
ences in marginal bone loss around
the LL implants and the NLL im-
plants (0.61 ± 0.34 mm vs 1.24 ±
0.35 mm on the mesial side, and
0.70 ± 0.11 mm vs 1.38 ± 0.26 mm
on the distal side). Radiographic re-
results of this study are aligned with
those of previous studies that com-
pared implants with a laser micro-
textured collar with those receiving
another surface treatment.10–15

The influence of the implant col-
lar surface on marginal bone loss
around implants has been discussed
only recently, and has received little
attention compared with other fac-
tors.20,21 Several studies proposed
that bone retention elements such
as microthread and microgrooves at
the implant neck might help to sta-
bilize the marginal bone.21–25 These
studies suggested that the retention
elements would counteract margin-
al bone resorption.

Using a three-dimensional mathe-
atical model and axisymmetric
finite element analysis to determine
the ideal rough surface, Hansson22
hypothesized that the surface rough-
ness or the retentive elements could
increase the resistance of marginal
bone to bone loss with the inter-
locking force between the implant
surface and the crestal bone. In that
study, the author showed that when
an axial load is applied to an implant,
the peak interfacial shear stress in the
marginal bone can be reduced by
providing retention elements all the
way up to the crest of the implant.

Retention elements on the im-
plant collar can be created with
the addition of machine-tooled
microthreads or laser-ablated mi-
crogrooves. Unlike machine-tooled
microthreads, laser microgrooves
are smaller in dimension by an order
of magnitude. Moreover, the nano-
topography of laser microgrooves
is more pronounced, having knobs
with rounded edges and some un-
dercuts (Fig 7), while blasted sur-
faces (Fig 8) on machine-tooled
microthreads show random nano-
roughness and somewhat sharp
edges.

However, the influence of sur-
face geometry and structure on
bone-to-implant interface against
the marginal bone resorption
around the implant neck or cervi-
cal area may be explained by many
other factors. One of these is rep-
resented by the significant effect of
the mechanical substrate support-
ing biologic tissue and its nanofea-
tures on cell growth, development,
behavior, and the strength of adhe-
sion through filopodial sensing.26–28

Some in vitro studies29,30 evaluat-
ing the effect of surface microge-
ometry with regard to attachment,
spreading, orientation, and growth
of fibroblasts reported that cultured
fibroblasts grown on microgrooved
surfaces become oriented and
channeled in line with the grooves,
whereas cells grown on nongrooved
surfaces showed random growth.
Furthermore, laser-ablated mi-
crogrooves promote oriented cell
filopodial contact and fibrin fibril
orientation.31 These in vitro results
have provided the hypothesis that
laser-microtextured surfaces could
be used to control soft tissue re-
sponses to implant surfaces. It has in
fact been suggested that on dental
implant collar, the laser microtex-
tured surface might act to establish
a predetermined site to attract a
physical connective tissue attach-
ment. Histologic research in an ani-
mal model32–34 and in humans35–37
has subsequently confirmed this
hypothesis, documenting the pres-
ence of a physical connective tissue
attachment onto laser-produced
microgrooves on implant and abut-
ment surfaces. The most important
aspects of this physical connective
tissue attachment may be the fact
that its position is determined by
the layout of the laser microgrooves,
with the connective tissue fibers
perpendicularly oriented to the im-
plant surface; these fibers act as a
seal to apical migration of gingival
epithelial cells and fibroblasts.

Based on these data, one might
speculate that repetitive nanosize
surface features created with a laser
on the implant collar have the ability
to allow fibroblasts to form a physi-
cal connective tissue attachment. As
is the case around natural teeth, in
which collagen bundles inserted into
the root cementum deter the down-
growth migration of the overlying
epithelium, epithelial downgrowth
around implants could be impeded
by firm physical attachment be-
tween the soft connective tissue and
the implant. The laser-microtextured
surface, although not analogous to
the cemental surface of the natural
teeth, seems to act in establishing a
predetermined site to attract a phy-

cial connective tissue attachment, to
restrict apical migration of gingival
epithelium, and thus to preserve the coronal level of bone. In light of the significant influence that the laser-microtextured collar surface has on marginal bone loss, it would be reasonable to assume that this kind of surface may provide greater soft tissue support to the implant.

It has been suggested that the level of the peri-implant marginal bone determines the level of the peri-implant mucosa. Furthermore, marginal bone loss may induce pocket formation, which could be unfavorable for the long-term health of the peri-implant tissues. In the present study, the mean PD values in the LL group and the NLL group were 0.58 ± 0.2 mm and 1.89 ± 0.3 mm, respectively, while the volume of the papillae, expressed in papilla index scores, increased significantly during follow-up in the LL group compared with the NLL group (a score of 3 was found in 52% of the LL group vs 33% of the NLL group). These results are in agreement with published data reporting a consistent difference in PD and peri-implant mucosal recession between the implant pairs with and without the laser microtexturing treatment.

The fact that implants with a laser-microtextured collar yield minimal bone loss could be an explanation for the peri-implant tissue results observed in the present study. As is the case around the teeth, epithelium seems to play an important role in implant function by sealing dental implants from contaminants in the external environment. Around implants, epithelial downgrowth could be impeded by firm attachment of the connective tissue to the implant, with cells and fibers attached to the implant surface, as is the case with Sharpey fibers around natural teeth. In the case of a dental implant, smooth collars do not permit connective tissue attachment, hence stability of the peri-implant soft tissue is lacking.

Because it is known that the proximal bone level next to the adjacent teeth is highly relevant for the level of the proximal papillae of the implant, in the present study these bone levels were also taken into consideration as an important predictor of the esthetic outcome. In both study groups, only a small amount of bone loss at the adjacent teeth was noticed during follow-up. The LL group showed a higher gain of the papillae than the NLL group, so it might be reasonable to assume that the Laser-Lok surface may provide higher soft tissue support to the implant. However, it should be recognized that single tooth replacement implant therapy is not without consequences for the midfacial level of the adjacent teeth, showing a recession of about 0.25 mm in both groups. When using the PES as an instrument to express soft-tissue esthetics, no significant differences between LL and NLL implants were observed in overall results, even if a statistically significant lower value of the distal and mesial implant papilla was observed in the NLL group compared with the LL group. The same applied to the volume of the papilla assessed with the papilla index.

Conclusion
In conclusion, within the limitations related to sample size and follow-up duration, this prospective study demonstrated that:

- Immediate functional loading of implants in single-tooth replacement in the esthetic zone may be considered a valuable and predictable option.
- Immediate functional loading of a single implant in the maxillary esthetic zone leads to a short-term treatment outcome that is more favorable with LL implants than with NLL implants.

However, more prospective studies monitoring soft tissue dynamics over longer periods and with greater sample size are needed to establish if a laser-microtextured implant collar surface might preserve peri-implant hard and soft tissue when using an immediate provisionalization protocol.

Acknowledgments
The authors reported no conflict of interests related to this study. Materials used in this study were funded by Classimplant SRL, Rome, Italy.

References

